SESTSUIPSE

AN oLl Ye
e o

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

Dijkstra’s algorithm

Aim of Dijkstra’s algorithm

* Dijkstra’s algorithm solves the single-source shortest-paths problem
on a weighted, directed graph ¢ = (V, E) for the case in which all
edge weights are nonnegative.

* The running time of Dijkstra’s algorithm is lower than that of the
Bellman-Ford algorithm

Dijkstra’s algorithm - idea

* Dijkstra’s algorithm maintains a set S of vertices whose final shortest-
path weights from the source s have already been determined.

* The algorithm repeatedly selects the vertex u € V - S with the
minimum shortest-path estimate,

e addsu to S, and
* relaxes all edges leaving u.

* min-priority queue Q of vertices can be used!

Pseudocode

DIKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
25 « @

3Q « VI[G]

4 whileQ = @

5 dou <« EXTRACT — MIN(Q)
6 S « S VU {u}

7 for each vertex v € Adj|u]
8 do RELAX(u, v, w)

Dijkstra Example

Initialize:

0: 4 B CDE

0 oo o o o

0 o o o o

[

S: {4 CE)

[

S:{A4 CE B}

S:{A4 CE B}

S {4 CEBD}

Do Dijkstra ?

17

result

18

Algorithm properties

DUKSTRA(G, w, s) * The algorithm maintains the

1 INITIALIZE-SINGLE-SOURCE(G, 5) invariantthat Q = V — S at
the start of each iteration of the

2S5 « @ . c1

30 < V[G] while loop of lines 4-8.

4whileQ = ¢ * The while loop of lines 4—8

5 dou « EXTRACT — MIN(Q) iterates exactly |V| times.

5 S« S U {u) * it uses a greedy strategy.

. always chooses the “closest”
/ for each vertex v € Adj[u] vertexinV — StoaddtosetS
8 do RELAX(u, v, w)

19

Theorem 24.6 (Correctness of Dijkstra’s algorithm)

* Dijkstra’s algorithm, run on a weighted, directed graph ¢ = (V,E)
with nonnegative weight function w and source s, terminates with
dlu] = 6(s,u) for all verticesu € V.

* Proof the following loop invariant:

* At the start of each iteration of the while loop of lines 4-8, d[v] = 6(s,v)
for each vertexv € S§.

Analysis

* Dijkstra maintains the min-priority queue Q by calling three priority-
gqueue operations:
* INSERT -> is invoked once per vertex
 EXTRACT-MIN -> is invoked once per vertex
» DECREASE-KEY -> at most |E| by using aggregate analysis

Analysis (1)

* Dijkstra maintains the min-priority queue Q by calling three priority-
gqueue operations:
* INSERT -> is invoked once per vertex O(1)
e EXTRACT-MIN -> is invoked once per vertex O (V)
« DECREASE-KEY -> at most |E| by using aggregate analysis O(1)

* Implementing the min-priority queue: ordinary array
 Number vertices from 1to v

* Store d|v] in the vth entry of array
e totaltime of O(V2 + E) = 0(V?).

Analysis (2)

* Dijkstra maintains the min-priority queue Q by calling three priority-
gueue operations:
* INSERT -> is invoked once per vertex O (V) (overall)
* EXTRACT-MIN -> is invoked once per vertex O(lg V)
« DECREASE-KEY -> at most |E| by using aggregate analysis O(lg V)

* Implementing the min-priority queue: min-Heap
* total timeof O((V + E)IgV) = O(ElgV).

e This running time is an improvement over the straightforward O (V%)
time implementation if E = o(V*/lgV).

23

Analysis (3)

* Dijkstra maintains the min-priority queue Q by calling three priority-
gqueue operations:
* INSERT -> is invoked once per vertex O (V) (overall)
* EXTRACT-MIN -> is invoked once per vertex amortized O(lg V)
« DECREASE-KEY -> at most |E| by using aggregate analysis amortized 0(1)

* Implementing the min-priority queue: Fibonacci heap
* total timeof O(V1gV + E)

24

